Dual pathways for copper uptake by methanotrophic bacteria.
نویسندگان
چکیده
Methanobactin (Mb), a 1217-Da copper chelator produced by the methanotroph Methylosinus trichosporium OB3b, is hypothesized to mediate copper acquisition from the environment, particularly from insoluble copper mineral sources. Although indirect evidence suggests that Mb provides copper for the regulation and activity of methane monooxygenase enzymes, experimental data for direct uptake of copper loaded Mb (Cu-Mb) are lacking. Uptake of intact Cu-Mb by M. trichosporium OB3b was demonstrated by isotopic and fluorescent labeling experiments. Confocal microscopy data indicate that Cu-Mb is localized in the cytoplasm. Both Cu-Mb and unchelated Cu are taken up by M. trichosporium OB3b, but by different mechanisms. Uptake of unchelated Cu is inhibited by spermine, suggesting a porin-dependent passive transport process. By contrast, uptake of Cu-Mb is inhibited by the uncoupling agents carbonyl cyanide m-chlorophenylhydrazone and methylamine, but not by spermine, consistent with an active transport process. Cu-Mb from M. trichosporium OB3b can also be internalized by other strains of methanotroph, but not by Escherichia coli, suggesting that Cu-Mb uptake is specific to methanotrophic bacteria. These findings are consistent with a key role for Cu-Mb in copper acquisition by methanotrophs and have important implications for further investigation of the copper uptake machinery.
منابع مشابه
The influence of nutritional conditions on metal uptake by the mixotrophic dual symbiosis harboring vent mussel Bathymodiolus azoricus.
The vent mussel Bathymodiolus azoricus, host thioautotrophic and methanotrophic bacteria, in their gills and complementary, is able to digest suspended organic matter. But the involvement of nutritional status in metal uptake and storage remains unclear. The influence of B. azoricus physiological condition on its response to the exposure of a mixture of metals in solution is addressed. Mussels ...
متن کاملRegulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions.
Methane is oxidized to methanol by the enzyme methane mono-oxygenase (MMO) in methanotrophic bacteria. In previous work, this multicomponent enzyme system has been extensively characterized at the biochemical and molecular level. Copper ions have been shown to irreversibly inhibit MMO activity in vivo and in vitro, but the effect of copper ions on transcription of the genes encoding the soluble...
متن کاملAerobic H2 respiration enhances metabolic flexibility of methanotrophic bacteria
26 Methanotrophic bacteria are important soil biofilters for the climate-active gas 27 methane. The prevailing opinion is that these bacteria exclusively metabolise single28 carbon, and in limited instances, short-chain hydrocarbons for growth. This specialist 29 lifestyle juxtaposes metabolic flexibility, a key strategy for environmental adaptation 30 of microorganisms. Here we show that a met...
متن کاملAcidophilic methanotrophic communities from Sphagnum peat bogs.
Highly enriched methanotrophic communities (> 25 serial transfers) were obtained from acidic ombrotrophic peat bogs from four boreal forest sites. The enrichment strategy involved using media conditions that were associated with the highest rates of methane uptake by the original peat samples, namely, the use of diluted mineral medium of low buffering capacity, moderate incubation temperature (...
متن کاملNitrifying and denitrifying pathways of methanotrophic bacteria.
Nitrous oxide, a potent greenhouse gas and ozone-depleting molecule, continues to accumulate in the atmosphere as a product of anthropogenic activities and land-use change. Nitrogen oxides are intermediates of nitrification and denitrification and are released as terminal products under conditions such as high nitrogen load and low oxygen tension among other factors. The rapid completion and pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 43 شماره
صفحات -
تاریخ انتشار 2011